Sir2 links chromatin silencing, metabolism, and aging.
نویسنده
چکیده
Aging is manifested by a progressive decline in vitality over time leading to death. Studies in budding yeast allow aging to be followed in individual pedigrees of cells, that is, those of mother cells, consequent to many rounds of cell division (Mortimer and Johnston 1959). These studies have led to the general conclusion that the silencing protein Sir2 is a limiting component of longevity; deletions of SIR2 shorten life span and an extra copy of this gene increases life span (Kaeberlein et al. 1999). Recent studies have spurred interest in Sir2 as a candidate longevity factor in a broad spectrum of eukaryotic organisms. SIR2 gene homologs have been found in a very wide range of organisms ranging from bacteria to humans (Brachmann et al. 1995). Moreover, a biochemical activity of Sir2 likely responsible for chromatin silencing, nicotinamide–adenine dinucleotide (NAD)-dependent histone deacetylase, has recently been discovered and shown to be broadly conserved (Imai et al. 2000). In this review, I will briefly discuss silencing as it pertains to SIR2 and its relationship to aging. I will then trace the studies that led to the discovery of the NADdependent histone deacetylase. I will next speculate how the regulation of Sir2 by NAD could represent the link between caloric intake and the pace of aging, which is widely observed in many organisms (Weindruch et al. 1986). Finally, I will present a speculative model of how a gradual disruption in chromatin silencing may occur and how such a change may cause aging.
منابع مشابه
Dietary and genetic effects on age-related loss of gene silencing reveal epigenetic plasticity of chromatin repression during aging
During aging, changes in chromatin state that alter gene transcription have been postulated to result in expression of genes that are normally silenced, leading to deleterious age-related effects on cellular physiology. Despite the prevalence of this hypothesis, it is primarily in yeast that loss of gene silencing with age has been well documented. We use a novel position effect variegation (PE...
متن کاملNutritional Control of Chronological Aging and Heterochromatin in Saccharomyces cerevisiae.
Calorie restriction extends life span in organisms as diverse as yeast and mammals through incompletely understood mechanisms.The role of NAD+-dependent deacetylases known as Sirtuins in this process, particularly in the yeast Saccharomyces cerevisiae, is controversial. We measured chronological life span of wild-type and sir2Δ strains over a higher glucose range than typically used for studyin...
متن کاملSIRT6 is required for maintenance of telomere position effect in human cells
In Saccharomyces cerevisiae, the repressive chromatin environment at telomeres gives rise to telomere position effect (TPE), the epigenetic silencing of telomere-proximal genes. Chromatin-modifying factors that control TPE in yeast have been extensively studied, and, among these, the lifespan regulator and silencing protein Sir2 has a pivotal role. In contrast, the factors that generate and mai...
متن کاملSumoylation of Sir2 differentially regulates transcriptional silencing in yeast
Silent information regulator 2 (Sir2), the founding member of the conserved sirtuin family of NAD(+)-dependent histone deacetylase, regulates several physiological processes including genome stability, gene silencing, metabolism and life span in yeast. Within the nucleus, Sir2 is associated with telomere clusters in the nuclear periphery and rDNA in the nucleolus and regulates gene silencing at...
متن کاملThe Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae.
Transcriptional silencing in Saccharomyces cerevisiae occurs at several genomic sites including the silent mating-type loci, telomeres, and the ribosomal DNA (rDNA) tandem array. Epigenetic silencing at each of these domains is characterized by the absence of nearly all histone modifications, including most prominently the lack of histone H4 lysine 16 acetylation. In all cases, silencing requir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genes & development
دوره 14 9 شماره
صفحات -
تاریخ انتشار 2000